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1 Introduction

The start of the LHC at CERN will enable us to study TeV-scale physics directly for the first

time. Most importantly, we will eventually probe the mechanism of electroweak symmetry

breaking; moreover, we will be able to test various scenarios for new physics beyond the

standard model (SM), the leading candidate of which is arguably supersymmetry (SUSY).

The presence of supersymmetry at the TeV-scale eliminates the quadratically-divergent

loop contributions to the Higgs mass and thereby stabilizes the electroweak scale against

the scales of more fundamental physics. In addition, TeV-scale SUSY models provide an

attractive mechanism for electroweak symmetry breaking and an appealing candidate for

cold dark matter. Furthermore, they offer a compelling outline for the unification of all

matter and interactions, the first step of which is grand unification [1].

The near unification of the SM gauge couplings within the minimal supersymmetric

standard model (MSSM) at MGUT ≃ 2 · 1016 GeV, with the MSSM being valid above the

TeV-scale, suggests that the standard-model group, GSM = SU(3)C × SU(2)L × U(1)Y ,

is embedded into a simple gauge group at this scale, such as SU(5) [2] or SO(10) [3].

SO(10) is arguably the most natural GUT group: both the SM gauge and matter fields are
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unified, introducing only one additional matter particle, the right-handed neutrino.1 It is

an anomaly-free theory and therefore explains the intricate cancellation of the anomalies in

the standard model [4]. Moreover, it contains B − L as a local symmetry, where B and L

are baryon and lepton number, respectively; the breaking of B−L provides light neutrino

masses via the seesaw mechanism. Remarkably, MGUT is of the right order of magnitude

to generate neutrino masses in the sub-eV range. Hence, the neutrino masses are linked to

the breaking of the GUT symmetry [5].

Flavor experiments, though not able to access the TeV scale directly, have put strong

constraints on the MSSM parameters. Due to the lack of deviation with respect to the SM,

we expect the new sources of flavor mixing and CP violation to be very limited for SUSY

particles around the weak scale. As formulated by the concept of minimal flavor violation [6,

7], we assume that the Yukawa couplings are the only source of flavor violation and (even

more) that the supersymmetry breaking parameters are universal at some fundamental

scale. Within the minimal supergravity (mSUGRA) scenario [8], this scale is usually taken

to be MGUT. An alternative and arguably more natural choice, however, would be the

Planck scale, MPl = G
−1/2
N = 1 · 1019 GeV.2 The reason to take the MSSM unification

scale instead is simply that while the use of the renormalization group equations of the

MSSM below MGUT is undisputed, the analysis of the region between MGUT and MPl

requires knowledge about the grand-unified model. However, the universality of the SUSY-

breaking parameters is broken by their evolution down to lower energies. Thus the choice

of MGUT eliminates potentially important flavor effects. In our analysis, we will adopt MPl

as universality scale, and study consequences of this choice in detail.

In the standard model, fermion mixing is only measurable among the left-handed states

and described by the quark and lepton mixing matrices, VCKM and VPMNS. Both small and

large mixing angles are realized: while those in the quark sector are small, two angles in

VPMNS turn out to be large. These are the neutrino solar and atmospheric mixing angles,

where the latter is close to maximal. The effects of VCKM and VPMNS are confined to the

quark and to the lepton sectors, respectively. In GUTs, however, this separation of quark

and lepton sector is abrogated as quarks and leptons are unified. Thus their masses and

mixings are related to each other. While different patterns are possible, it is natural to

expect imprints of VPMNS on the quark sector as well. In particular, it might be possible

to trade off small rotations of left-handed down quarks and right-handed leptons against

large mixings among right-handed down quarks and left-handed leptons, as we will discuss

below. The mixing of the right-handed fermions is unobservable due to the absence of

right-handed flavor-changing currents at the weak scale. With weak-scale supersymmetry,

the mixing of the corresponding scalar partners of quarks and leptons becomes physical.

The impact of the large atmospheric mixing angle on Bs physics has already been in-

vestigated in detail [9–12]. Due to the good agreement of the bottom-quark and tau-lepton

masses at MGUT, one can adopt the predicted Yukawa unification of down quarks and

charged leptons. In order to study K and Bd physics, however, one needs to go beyond

1Strictly speaking, it is the left-handed neutrino singlet.
2Alternatively, one might choose the reduced Planck scale, MPl = (8πGN )−1/2 = 2 · 1018 GeV, because

it compensates for the factor 8π in the Einstein field equations.
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minimal models and modify the relations among the Yukawa couplings.3 Here, we can

pursue two avenues: we can either introduce additional Higgs fields in larger representa-

tions, such as a 45H in SU(5), or parameterize the modifications via higher-dimensional

operators, suppressed by powers of a more fundamental scale [15, 16]. We opt for the

latter route for three reasons. One, large Higgs representations introduce a large number

of additional fields, which both yields large threshold corrections at MGUT and makes the

gauge coupling blow up shortly above the GUT scale. Two, the use of higher-dimensional

operators reflects the successful Yukawa unification of the third generation; the corrections

are suppressed and therefore apply mostly to the lighter generations. Finally, we are able

to perform a more general study as we do not rely on specific Higgs fields.

In this paper, we will study the impact of the higher-dimensional Yukawa operators

on K − K and Bd − Bd mixing. A SUSY-SO(10) GUT with universal supersymmetry-

breaking parameters at the Planck scale will serve as our specific framework. In particular,

the precise measurement of ǫK will enable us to tightly constrain the additional (s)quark

mixing caused by these operators. The validity of our results for more general classes of

grand-unified models will also be assessed.

2 Yukawa unification and dimension-five operators

Grand-unified theories using small Higgs representations to break the electroweak sym-

metry generically predict the unification of down-quark and charged-lepton masses [1, 2].4

Before turning to SO(10), let us consider minimal SU(5) to bring out the central idea of this

work. Here the down-quark singlet, dc, and lepton doublet, L, fill up the 5 representation,

whereas the quark doublet, Q, as well as the up-quark and the electron singlets, uc and ec,

are embedded in the 10. As usual, these are left-chiral superfields; for instance, we have

the electron singlet ecL instead of the right-handed electron eR. The adjoint Higgs field Σ

breaks SU(5) to the standard-model group, which is then broken to SU(3)C ×U(1)em by a

pair of quintets, H +H.

The corresponding Yukawa couplings read

WY = Y
ij
1 ǫabcde 10abi 10cdj He + Y

ij
2 10abi 5jaHb , (2.1)

where a, b, . . . denote SU(5) and i, j flavor indices. The second coupling yields the uni-

fication of down-quark and charged-lepton Yukawa couplings Yd,e (and thus of the corre-

sponding masses). If Yd,e are defined such that the weak doublets are on the left and the

singlets on the right, we obtain

Yd = Y
⊤
e = Y2 . (2.2)

3These modifications were neglected in ref. [13], whose authors consider minimal SU(5). Similarly,

ref. [14] assumes a minimal SO(10) model where VCKM describes all SM flavor mixing (the study is from

1995, i.e. before the large mixing angles in the lepton sector were established).
4The unification of down-quark and charged-lepton masses is a prediction of the SU(4) symmetry, which

is present in the Pati-Salam model and respected in minimal SU(5).
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The mixings of the right-handed (left-handed) down quarks are thus identical (or, more

precisely, conjugated) to those of the left-handed (right-handed) charged leptons.

This relation works remarkably well for the third generation but not for the lighter

ones. Thus we need to include corrections, which are generically generated by higher-

dimensional Yukawa operators, suppressed by powers of the Planck scale, MPl [15]. With

the given particle content, we have two operators of mass-dimension five contributing to

the down-quark and charged-lepton masses [15],

Y
ij
σ1 10abi 5ja

Σc
b

MPl
Hc + Y

ij
σ2 10abi 5jc

Σc
b

MPl
Ha . (2.3)

The vacuum expectation value (vev) of Σ is proportional to hypercharge, 〈Σ〉 =

σ diag (2, 2, 2;−3,−3). Hence, the second operator modifies the relation (2.2),

Yd = Y
⊤
e + 5

σ

MPl
Yσ2 . (2.4)

Now we cannot diagonalize both Yukawa matrices simultaneously anymore. In the basis

where the charged leptons are diagonal, we obtain

Ld DdR
†
d = De + 5

σ

MPl
Ỹσ2 ; (2.5)

Di denote the diagonal Yukawa matrices, and Ld and Rd are unitary rotation matrices for

the down-quark fields. The good agreement of the bottom and tau masses at the GUT

scale indicates that the rotation matrices Ld and Rd have a non-trivial 1-2 block only,5

Ld, Rd ∼



∗ ∗ 0

∗ ∗ 0

0 0 1


 . (2.6)

Hence, the effect of the additional rotations may only be seen in observables involving the

first and second generations.

The effect of the dimension-five operators on proton decay has been studied in great

detail [17]. In this paper, we point out that the rotation matrix Rd can be severely con-

strained by the precise measurements in K and Bd physics. This, in turn, allows for a

complementary study of these operators and thus enables us to probe grand-unified models.

In the following, we will omit the indices of the higher-dimensional operators. For

instance, we will denote the operators in eq. (2.3)

Y
ij
σ 10i 5j

Σ

MPl
H ≡ Y

ij
σ1 10abi 5ja

Σc
b

MPl
Hc + Y

ij
σ2 10abi 5jc

Σc
b

MPl
Ha . (2.7)

Note that these index-less operators represent all possible combinations for the fields to

form a singlet, and so Yσ is an effective coupling matrix.

5Even if Y
33
σ2 ∼ 1, it is suppressed with respect to Y

33
2 by σ/MPl.
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3 Framework

Let us now turn to SO(10) and consider a model proposed by Chang, Masiero, and Mu-

rayama (CMM) [9]. Here the matter fields are unified in the spinor representations, 16i,

together with the right-handed neutrinos. SO(10) is broken to SU(5) by a pair of Higgs

spinors, 16H + 16H . Next, an adjoint field, 45H , breaks SU(5) and the electroweak sym-

metry is eventually broken by a pair of fundamental Higgs fields, 10H and 10′H . In fact,

both the SU(5) adjoint and the SU(5) singlet of 45H acquire vevs, the latter (denoted by

v0 ∼ 1017 GeV) being an order of magnitude larger than the former (σ ∼ 1016 GeV).

The Yukawa couplings in the CMM superpotential read

WY = 16i Y
ij
1 16j 10H + 16i Y

ij
2 16j

45H 10′H
MPl

+ 16i Y
ij
N 16j

16H16H
MPl

. (3.1)

Let us discuss the individual terms in detail. In the fundamental Higgs field 10H , only

the up-type Higgs doublet Hu acquires a weak-scale vev such that the first term gives

masses to the up quarks and neutrinos only. The masses for the down quarks and charged

leptons are then generated through the vev of the down-type Higgs doublet Hd in the

second fundamental Higgs field 10′H . (A second Higgs field with Yukawa couplings to the

SM fermions is generally needed in order to have a non-trivial flavor structure.) They are

obtained from the second term in eq. (3.1) which is of mass-dimension five, in contrast to

minimal SU(5). As indicated above, this operator actually stands for various, inequivalent

effective operators with both the SU(5)-singlet and the SU(5)-adjoint vevs of the adjoint

Higgs field 45H such that the coupling matrix Y2 can only be understood symbolically.

The magnitude of this second mass term is determined by the vev of the SU(5)-singlet

component, v0, which contributes equally to down-quark and charged-lepton masses. The

strong hierarchy between the t and b, τ masses then follows from the v0/MPl suppression

factor. The smaller SU(5)-breaking vev (σ), which is proportional to hypercharge as in

SU(5), will be important for the modification of the light generation Yukawa couplings.

The second term in eq. (3.1) can be constructed in various ways, for example by integrating

out SO(10) fields at the Planck scale. The corresponding couplings can be symmetric or

antisymmetric [18], resulting in an asymmetric effective coupling matrix Y2, as opposed to

the symmetric matrices Y1 and YN . Finally, the third term in eq. (3.1), again a higher-

dimensional operator, generates Majorana masses for the right-handed neutrinos.

We can always choose a basis where one of the Yukawa matrices in eq. (3.1) is diagonal.

In particular, the basis where Y
ij
1 is diagonal will be referred to as the up-basis. In the

CMM model, however, one assumes that Y
ij
1 and Y

ij
N are simultaneously diagonalizable.

This assumption is motivated by the observed values for the fermion masses and mixings

and might be a result of family symmetries. First, we note that the up quarks have a

stronger hierarchy than the down quarks, charged leptons, and neutrinos. Consequently,

the eigenvalues of YN must almost have a double hierarchy compared to Y1. Then, given

the Yukawa couplings in an arbitrary basis, we expect smaller off-diagonal entries in the ro-

tation matrices of Y1 and YN than in Y2 because hierarchical masses generically correspond

to small mixing. Moreover, the light neutrino mass matrix implies that, barring cancella-

tions, the rotations needed to diagonalize Y1 should be smaller than those in VCKM [19].

– 5 –
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Thus, even if YN is not exactly diagonal in the up-basis, the off-diagonal entries in its

rotation matrix will be much smaller than the entries in VCKM so that they cannot spoil

the large mixings among dR quarks generated by VPMNS.

Now, with Y1 and YN being simultaneously diagonal, the flavor structure is (apart

from supersymmetry-breaking terms, which we will discuss below) fully contained in the

remaining coupling, Y2. Let us assume for the moment that the relation (2.2) is valid.

Then we can rewrite the superpotential in the SU(5) basis as

WY = 16i D
ij
1 16j 10H + 16i

(
V ∗
q D2Vℓ

)ij
16j

45H 10′H
MPl

+ 16iD
ij
N 16j

16H16H
MPl

, (3.2)

where the second coupling is to be understood as (Q, ec)⊤ V ∗
q D2Vℓ (d

c, L) 45H10′H/MPl

(cf. section 2). Then Vq and Vℓ coincide with the quark and lepton mixing matrices,

VCKM and VPMNS, up to phases.6 Note that the mass matrices of both down quarks and

charged leptons have a lopsided structure.

As discussed in the previous section, the relation (2.2) needs to be modified. Using

the SU(5)-breaking vev of 45H , σ, we obtain

Yd = Y
⊤
e + 5

σ

v0
Yσ , (3.3)

in accordance with SU(5) discussed above. Again, this notation is symbolic, as Yσ stems

from several distinct operators. Without these corrections, the large atmospheric mix-

ing angle could directly be translated to maximal mixing between the right-handed down

squarks b̃R and s̃R. Now the CKM matrix diagonalizes Yd Y
†
d whereas the PMNS matrix

diagonalizes Ye Y
†
e, such that we cannot give a general relation between the contributions

of the correction operators and additional rotations. Let us therefore make the ansatz

Rd = (U Vℓ)
⊤ , (3.4)

i.e., the rotation of the down-quark singlet fields differs from that of the lepton doublets by

a unitary matrix U . Clearly, in absence of the correction operators, U = 1. As said before,

the goal of this paper is to study how much the rotations parameterized by Rd differ from

those of the charged leptons, i.e. whether a sizeable admixture of d̃R in s̃′R is allowed.

As discussed above, the good bottom-tau unification implies that the (33)-entry of

U should be close to one, up to a phase, and the remaining entries of the third row and

column should be small. Thus we parameterize U as

U =



U11 U12 0

U21 U22 0

0 0 eiφ4


 =




cos θ eiφ1 − sin θ ei(φ1−φ2+φ3) 0

sin θ eiφ2 cos θ eiφ3 0

0 0 eiφ4


 , (3.5)

with θ ∈ [0, π/2]. For concreteness, let us assume the tribimaximal form for the leptonic

mixing matrix, corresponding to the mixing angles θ12 = arcsin
(
1/
√

3
)
≃ 35◦, θ13 = 0◦,

6In the up-basis, VCKM is conventionally defined as the matrix that rotates the left-handed down-quark

mass eigenstates into the weak eigenbasis, while the inverse of VPMNS rotates the corresponding charged

leptons. The transposition between Rd and Vℓ in eq. (3.4) is due to relation (2.2).

– 6 –
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and θ23 = 45◦. In the up-basis, we can have Vq in its standard parametrization and thereby

absorb five of the six phases. Then we can indeed identify Vq = VCKM. We cannot do so

for Vℓ since we would only move the phases from the down-quark Yukawa matrix to the

down-squark soft-breaking masses. We therefore choose to have Vℓ with six phases; to see

them explicitly, let us write down the mixing matrix for θ13 6= 0,

Vℓ=




√
2
3c13 e

iα1 1√
3
c13 e

iα2 s13 e
i(δ+α3)

eiα4

(
− 1√

6
− 1√

3
s13 e

−iδ
)

ei(−α1+α2+α4)
(

1√
3
− 1√

6
s13 e

−iδ
)

1√
2
c13 e

i(−α1+α3+α4)

eiα5

(
1√
6
− 1√

3
s13 e

−iδ
)

ei(−α1+α2+α5)
(
− 1√

3
− 1√

6
s13 e

−iδ
)

1√
2
c13 e

i(−α1+α3+α5)


 ,

(3.6)

where c13 = cos θ13 and s13 = sin θ13. In this parametrization, we can easily

identify the standard phase, δ, and then the standard form for VPMNS is given by

VPMNS = PLVℓPR, where

PL = diag
(
e−iα1 , e−iα4 , e−iα5

)
, PR = diag

(
1, ei(α1−α2), ei(α1−α3)

)
. (3.7)

If θ13 is indeed zero, the phase δ drops out of the matrix (3.6). This situation is familiar

from the standard model: CP violation requires θ13 6= 0. Altogether, for θ13 = 0, the

mixing matrix for the right-handed down quarks in eq. (3.4) reads

Rd=
1√
6




2U11 e
iα1 − U12 e

iα4 2U21 e
iα1 − U22 e

iα4 ei(φ4+α5)

√
2 eiα2

(
U11+U12 e

i(α4−α1)
) √

2 eiα2

(
U21+U22 e

i(α4−α1)
)
−
√

2 ei(φ4−α1+α2+α5)

√
3U12 e

i(−α1+α3+α4)
√

3U22 e
i(−α1+α3+α4)

√
3 ei(φ4−α1+α3+α5)




(3.8)

with Uij as given in eq. (3.5).

Due to the absence of right-handed multiplets in the standard model, mixing among

the right-handed down quarks is unobservable. With supersymmetry, however, the mixing

of the corresponding squarks potentially leads to enhanced amplitudes for flavor-changing

processes. As mentioned in the Introduction, we will assume universal soft-breaking terms

at the Planck scale. This universality, however, is no longer present at the electroweak scale.

For the scalar masses, this is due to the large Yukawa coupling of the third generation in

the renormalization group evolution (RGE), such that

M
2
d̃
(MZ) = diag

(
m2
d̃
, m2

d̃
, m2

d̃

(
1 − ∆d̃

))
(3.9)

in the case of the d̃R soft-breaking terms. The fast RGE between MPl and v0 allows for

rather large values of ∆d̃ [9, 11]. Now choosing the super-CKM basis where the down

quarks are mass eigenstates, this matrix is no longer diagonal; in particular, all elements

of the 2-3 block are of comparable size:

M̃
2
d̃

= R†
d M

2
d̃
Rd = m2

d̃




1 − sin2 θ∆d̃/2 sin(2θ) e−iφK ∆d̃/4 sin θ e−iφBd ∆d̃/2

sin(2θ) eiφK ∆d̃/4 1 − cos2 θ∆d̃/2 − cos θ e−iφBs ∆d̃/2

sin θ eiφBd ∆d̃/2 − cos θ eiφBs ∆d̃/2 1 − ∆d̃/2


 ,

φK = φ1 − φ2 , φBs = φ3 − φ4 + α4 − α5 , φBd
= φ1 − φ2 + φ3 − φ4 + α4 − α5 .

(3.10)
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This observation motivated detailed studies of b → s transitions in supersymmetric GUT

models, in particular the decay b → sγ and Bs − Bs mixing [9–11]. In the following, we

will study the impact of the 1-2 and 1-3 blocks, generated by the angle θ in eq. (3.5), on

the analogous s→ d and b→ d transitions, focussing on K −K and Bd −Bd mixing.

4 Meson-antimeson mixing

The oscillations of a P 0−P 0
meson system can be described by a Schrödinger-type equation,

i
d

dt

(
|P 0(t)〉
|P 0

(t)〉

)
=

[
MP − i

2
ΓP
](|P 0(t)〉

|P 0
(t)〉

)
, (4.1)

where MP and ΓP are two 2 × 2 hermitian matrices which encode the four transitions

P 0/P
0 → P 0/P

0
via virtual and physical intermediate states, respectively. The physical

states |P 0
1 〉 and |P 0

2 〉 are obtained by diagonalizing MP − i
2ΓP . The relevant quantity to

study new-physics effects in P 0 − P
0

mixing is the local contribution to the off-diagonal

element of MP :

MP
12 =

1

2MP

〈
P 0
∣∣H∆F=2

eff

∣∣P 0
〉
, (4.2)

with MP , the average meson mass (MP1
+ MP2

)/2. The effective Hamiltonian H∆F=2
eff ,

which comprises in general eight effective operators,

H∆F=2
eff =

G2
FM

2
W

16π2

8∑

i=1

CiP (µP )QiP (µP ), (4.3)

is conveniently expressed at the scale µP ∼MP in the Bd and Bs systems, and at the scale

µP . mc in the kaon system. For an extensive introduction into the formalism of K −K

and Bd,s −Bd,s mixing, see e.g. ref. [20].

One observable which is particularly well-suited to constrain the additional rotation of

the d̃R and s̃R squarks in eq. (3.5) is

|ǫK | = κǫ
Im
(
MK

12

)
√

2∆MK

, (4.4)

which measures the amount of CP-violation in K −K mixing amplitudes. Indeed, |ǫK | is

very small in the standard model and its experimental value, measured with high precision,

leaves only little room for new physics. The correction factor κǫ above parameterizes both

the small deviation of sinφǫK = ∆MK/(∆M
2
K + ∆Γ2

K/4)
1/2 from 1/

√
2 and the small

contribution from the phase of the isospin-zero K → ππ decay amplitude. This factor was

estimated to κǫ = 0.92 ± 0.02 [21] assuming the standard model. Its modification in the

presence of new physics will not alter our analysis, and we will ignore this complication.

The mass difference ∆MK between the two eigenstates KL and KS receives both short-

distance and long-distance contributions, such that the constraint on possible new-physics

effects in the short-distance part,

(∆MK)SD = 2Re
(
MK

12

)
, (4.5)
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∆M exp
K =(3.483±0.006)·10−12 MeV [23] |ǫK |exp = (2.229 ± 0.012) · 10−3 [23]

∆M exp
d =(3.337±0.033)·10−10 MeV [23] Sexp

J/ψKS
= 0.671 ± 0.024 [24]

∆M exp
s = (117.0 ± 0.8) · 10−10 MeV [23] φexp

s =(−0.77+ 0.29
− 0.37) ∪ (−2.36+ 0.37

− 0.29) rad [24]

Table 1. Current experimental values of the various ∆F = 2 observables considered in eqs. (4.4)–

(4.9).

is somewhat diluted among hadronic uncertainties. Despite its precise experimental knowl-

edge, ∆MK will thus play a minor role in our study.

On the contrary, when new sources of CP-violation in the kaon system are small, two

observables in the Bd system will prove useful to gain information on the mixing angle θ.

These are the mass difference,

∆Md = 2
∣∣∣MBd

12

∣∣∣ , (4.6)

and the coefficient of the sin (∆Md t) term in the Bd → J/ψKS time-dependent CP asym-

metry,

SJ/ψKS
=sin

(
2β+φ∆

d

)
≃ Im


 MBd

12∣∣∣MBd
12

∣∣∣


 , β≡arg

[
−V ∗

tdVtb
V ∗
cdVcb

]
, φ∆

d ≡arg
MBd

12

MBd,SM
12

. (4.7)

The phase φ∆
d parameterizes CP-violating effects beyond the SM in Bd−Bd mixing. Here

and in the following, we use the standard CKM phase convention.

Finally, we will also consider the mass difference in the Bs system,

∆Ms = 2
∣∣∣MBs

12

∣∣∣ , (4.8)

as well as the phase measured in the Bs → J/ψ φ time-dependent angular distribution,

−2βeff
s =−2βs+φ

∆
s ≃arcsin


Im

MBs
12∣∣∣MBs
12

∣∣∣


 , βs≡− arg

[
−V ∗

tsVtb
V ∗
csVcb

]
, φ∆

s ≡arg
MBs

12

MBs,SM
12

.

(4.9)

In the SM, βs is tiny: 2βs ≃ 0.04. As long as φ∆
s is not too small, we thus have −2βeff

s ≃ φ∆
s .

On the other hand, one also has φs ≡ arg(−MBs
12 /Γ

Bs
12 ) ≃ φ∆

s [22]. In the following, we will

thus identify φs = −2βeff
s .

The current experimental values of the various observables above are reported in ta-

ble 1.

4.1 Standard-Model contributions

In the standard model, W box diagrams with virtual t and/or c flavors generate the effective

operators

QVLL
K =

(
dLγµsL

) (
dLγ

µsL
)
, QVLL

Bq
= (qLγµbL) (qLγ

µbL) (4.10)
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sL
cL, tL

dL

W W

sL
cL, tL

dL
(a)

sR
d̃m,R

dR

g̃

dR

g̃

sR
d̃k,R

dR
(b)

Figure 1. Dominant short-distance contributions to MK
12 (a) in the SM; (b) in the CMM extension.

for kaons (see figure 1a) and Bq (q = s or d), respectively. The corresponding Wilson

coefficients at the scale µP read

CVLL
K (µK) = 4UK(µK)

[
(V ∗
cdVcs)

2η1S0(xc) + 2(V ∗
cdVcs)(V

∗
tdVts)η3S0(xc, xt)

+ (V ∗
tdVts)

2 η2S0(xt)
]
,

CVLL
Bq

(µBq) = 4UBq(µBq)(V
∗
tqVtb)

2ηBS0(xt),

(4.11)

where the factors

UK(µ) =
[
α(3)
s (µ)

]−2/9
[
1 +

α
(3)
s (µ)

4π
J3

]

and UBq(µ) =
[
α(5)
s (µ)

]−6/23
[
1 +

α
(5)
s (µ)

4π
J5

] (4.12)

encode the µK , µBq -dependent parts of the short-distance QCD corrections up to next-to-

leading order (NLO), while ηi account for their µK , µBq -independent contributions [25, 26];

their values are given in table 2. The loop functions S0(xq) and S0(xc, xt) are listed in the

appendix. Finally, xq = m2
q/M

2
W and mq ≡ mq(mq) is the MS mass.

In order to compute M
K,Bq

12 , we still need the matrix elements of QVLL
K and QVLL

Bq
.

These are parameterized in terms of “bag factors” BP , computed at the scale µ = O(µP ):

〈
P 0
∣∣QVLL

P (µ)
∣∣P 0
〉

=
2

3
M2
PF

2
PBP (µ), (4.13)

where FP is the decay constant of the P meson. The scale dependences of UP (µ) and BP (µ)

cancel each other, so that it is convenient to define the renormalization-group-invariant

parameters B̂P = BP (µ)UP (µ). Eqs. (4.11), (4.12), and (4.13) then lead to

(MK
12)

SM =
G2
FM

2
W

12π2
MKF

2
KB̂K

[
(λcds)

2η1S0(xc) + 2(λcds)(λ
t
ds)η3S0(xc, xt)

+ (λtds)
2 η2S0(xt)

]
,

(M
Bq

12 )SM =
G2
FM

2
W

12π2
MBqF

2
Bq
B̂Bq(λ

t
qb)

2ηBS0(xt),

(4.14)

where one defines λkij = V ∗
kiVkj.
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4.2 CMM contributions

In the context of the CMM model, the dominant supersymmetric effects originate from

gluino box diagrams with virtual d̃R, s̃R, and b̃R flavors due to the large mixings in eq. (3.8).

This gives rise to the parity-reflected operators (figure 1b)

QVRR
K =

(
dRγµsR

) (
dRγ

µsR
)
, QVRR

Bq
= (qRγµbR) (qRγ

µbR) . (4.15)

The initial conditions for the Wilson coefficients at the SUSY scale MS = O(md̃j
,mg̃)

read [9, 11]

CCMM
K,Bq

(MS) =
16π2

G2
FM

2
W

α2
s(MS)

2m2
g̃

3∑

k,m=1

(Rd)mj(Rd)
∗
mi(Rd)kj(Rd)

∗
ki L0(rm, rk), (4.16)

where (i, j) = (1, 2) in the kaon case, (1, 3) in the Bd case, and (2, 3) in the Bs case. The

loop function L0(rm, rk) is defined in the appendix, the down-type squark mixing matrix

Rd was given in eq. (3.8), and rj = m2
d̃j
/m2

g̃. Exploiting the mass degeneracy of the first

two generations (see eq. (3.9)) as well as the unitarity of Rd, eq. (4.16) simplifies to

CCMM
K,Bq

(MS) =
16π2

G2
FM

2
W

α2
s(MS)

2m2
g̃

[(Rd)3j(Rd)
∗
3i]

2

× {L0(r1, r1) − 2L0(r1, r3) + L0(r3, r3)} , (4.17)

r1 = m2
d̃
/m2

g̃, r3 = m2
d̃

(
1 − ∆d̃

)
/m2

g̃. (4.18)

The RGE of the above Wilson coefficients from the scale MS down to the scale µK,Bq is per-

formed in two steps: first, the leading-order matching coefficients in eq. (4.17) are evolved

down to µt = O(mt) by means of the leading-order RGE factor η6 = [α
(6)
s (MS)/α

(6)
s (µt)]

2/7.

The remaining evolution, running over two orders of magnitude, is achieved using NLO

formulas — essentially the UK(µK), η2, UBq(µBq), and ηB factors of section 4.1. The O(αs)

QCD corrections to the SM function S0(xt) at the scale µt, which are contained in η2 and

ηB , should be removed. Denoting them by r = 0.985 [26], we get

CCMM
K (µK) = UK(µK) η2

1

r
η6 C

CMM
K (MS), (4.19)

and similarly for CCMM
Bq

(µBq). The cancellation of the µt-dependence between the two

parts of the evolution is of course incomplete, yet this is a numerically small effect which

can be neglected.

The bag parameters of the effective operators QVRR
K and QVRR

Bq
are identical to those

of the SM operators in eq. (4.13) such that the CMM contributions to the matrix elements

MP
12 finally read

(MK
12)CMM =

α2
s(MS)

6m2
g̃

MKF
2
KB̂K

e−2iφK sin2(2θ)

16

η2η6

r
S(g̃)(r1, r3),

(MBd
12 )CMM =

α2
s(MS)

6m2
g̃

MBd
F 2
Bd
B̂Bd

e−2iφBd sin2 θ

4

ηBη6

r
S(g̃)(r1, r3),

(MBs
12 )CMM =

α2
s(MS)

6m2
g̃

MBsF
2
Bs
B̂Bs

e−2iφBs cos2 θ

4

ηBη6

r
S(g̃)(r1, r3),

(4.20)
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κǫ = 0.92 ± 0.02 [21] |Vus| = 0.2246 ± 0.0012 [27]

FK = (156.1 ± 0.8) MeV [27] |Vcb| = (41.6 ± 0.6) · 10−3 [23]

B̂K = 0.75 ± 0.07 [28] |Vub| = (3.95 ± 0.35) · 10−3 [23]

FBsB̂
1/2
Bs

= (270 ± 30) MeV [28] γ = (70.7+ 5.7
− 7.0)

◦ [see text]

ξ ≡ FBs
bB

1/2

Bs

FBd
bB
1/2

Bd

= (1.21 ± 0.04) [28] η1 = (1.32 ± 0.32)
[

1.30 GeV
mc(mc)

]1.1
[25, 29]

mc(mc) = (1.266 ± 0.014) GeV [32] η2 = 0.57 ± 0.01 [26, 29]

mt(mt) = (162.1 ± 1.2) GeV [31, 33] η3 = 0.47 ± 0.05 [25, 29]

αs(MZ) = 0.1176 ± 0.0020 [23] ηB = 0.551 ± 0.007 [26, 30]

Table 2. Input parameters.

where we explicitly display the factors (Rd)3i in eq. (4.17), S(g̃)(r1, r3) = L0(r1, r1) −
2L0(r1, r3) + L0(r3, r3), and the CMM phases φK , φBd

, and φBs have been defined in

eq. (3.10). Note that they fulfill the relation φBd
= φK + φBs .

4.3 Additional supersymmetric contributions

Finally, we comment on the supersymmetric contributions which do not exhibit the large

enhancement factors characteristic of the CMM model, namely charged-Higgs(H)-quark

and chargino(χ)-squark box diagrams. They do not introduce new operators, and the

flavor structure of the corresponding matrix elements is the same as in the SM,

(MK
12)H+χ =

G2
FM

2
W

12π2
MKF

2
KB̂K

×
{
2(λcds)(λ

t
ds)η

H
3 SH(c, t) + (λtds)

2 η2 [SH(t, t) + Sχ(t, t)]
}
,

(M
Bq

12 )H+χ =
G2
FM

2
W

12π2
MBqF

2
Bq
B̂Bq(λ

t
qb)

2ηB [SH(t, t) + Sχ(t, t)] .

(4.21)

The loop functions SH(c, t), SH(t, t), and Sχ(t, t) are given explicitly in ref. [7]. The factor

ηH3 = 0.21 [7] denotes leading-order QCD corrections to the charged-Higgs box with virtual

flavors (c, t). Numerically, charged-Higgs and chargino contributions are small compared

to CMM effects. We checked explicitly that they can be neglected in our analysis.

5 Numerical analysis

We are now ready to investigate the constraints of K − K and Bd − Bd mixing on the

angle θ in the down-type squark mixing matrix Rd. Since we do not expect a miraculous

cancellation of the phases φ1 and φ2, we will first focus on the case where sin 2φK ∼ O(1)

(section 5.2) and derive constraints on θ from |ǫK | alone. We will then turn to the special

case sin 2φK ∼ 0 (section 5.3) where, as we will see, interesting constraints can still be

obtained from ∆MK , ∆Md, SJ/ψKS
, and ∆Md/∆Ms.

The values of the various input parameters adopted in our numerical analysis are

reported in table 2. Inputs related to CKM elements have to be protected from new-

physics impact. To this end, we determine the CKM matrix from the elements |Vub|, |Vcb|,
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|Vus|, and δ, the CP-phase in the standard parametrization, which equals the angle γ of

the unitarity triangle to very good accuracy. The three CKM elements are extracted from

tree-level decays. We use |Vus| = 0.2246 ± 0.0012 [27], the inclusive determination |Vcb| =

(41.6 ± 0.6) · 10−3 [23], and the average of inclusive and exclusive determinations |Vub| =

(3.95±0.35) ·10−3 [23]. The angle γ is determined via γ = π−α−β = π−αeff −βeff, with

βeff = β + φ∆
d /2 = (21.1 ± 0.9)◦ from SJ/ψKS

[24] and αeff = α− φ∆
d /2 = (88.2+ 6.1

− 4.8)
◦ from

B → ππ, πρ, ρρ decays [34]. The dependence on the new-physics phase φ∆
d cancels out in

the sum αeff+βeff, such that γ = (70.7+ 5.7
− 7.0)

◦ is indeed free from new-physics contamination.

No assumption is made on the squark mixing parameters θ, φK , φBd
, and φBs prior to

the analysis of the observables in table 1. The supersymmetric parameters (in particular

mg̃, r1, and r3, or equivalently mg̃, md̃, and ∆d̃), on the other hand, are chosen such as

to satisfy the constraints coming from other observables. The identification of viable sets

of SUSY parameters is the subject of the next section.

5.1 CMM parameter sets

In the CMM model, the large number of free SUSY parameters shrinks to six input param-

eters at the electroweak scale (in addition to θ and the CMM phases φK , φBd
, and φBs).

These can be chosen as the gluino mass mg̃, the first-generation d̃R and ũR soft masses

md̃ and mũ,
7 the ratio of the (11)-elements of the trilinear and Yukawa couplings in the

super-CKM basis a1
d = (Ad)11/(Yd)11, the phase of the µ parameter in the Higgs potential

arg(µ), and the ratio of the two Higgs-doublet vevs tan β. The RGE links these CMM

inputs to the remaining SUSY parameters via the assumption of universal soft-breaking

parameters at the Planck scale and the intermediate SO(10) and SU(5) GUT relations.

Note that the similar input parameters in the CMM model and in specific SUSY scenarios

without grand unification still lead to very different phenomenologies. In such well-studied

scenarios as mSUGRA or the CMSSM, the SUSY-breaking parameters are universal at

MGUT, as mentioned in the Introduction, leaving the universal gaugino and scalar masses,

m1/2 and m0, the trilinear coupling A, as well as the sign of µ and tanβ as free parameters.

In contrast to GUT models, however, these scenarios do not relate quarks and leptons to

each other; the MSSM fields can be rotated independently and the large lepton mixing

angles do not become visible in the quark sector.

To establish benchmarks for our analysis of the down-squark mixing angle θ in K −K

and Bd −Bd mixing, we make sure that the chosen CMM input parameters are in accord

with the other observables sensitive to CMM effects, and that they respect constraints

common to generic SUSY scenarios. To this end, we make use of the Mathematica code

written by the authors of ref. [12], which implements the relations between the CMM

input parameters discussed above and the remaining SUSY parameters at the electroweak

scale. The most restrictive observable is the experimental lower bound on the mass of the

lightest Higgs boson mh. For small values of tan β it is close to the SM bound, mh ≥
114.4GeV [36]. The main radiative corrections to the tree-level Higgs mass in the MSSM,

mtree
h ≤ MZ | cos 2β|, stem from (s)top loops. For very small values of tan β ≈ 3 the

7The specification of both md̃ and mũ fixes the D-term scalar mass splitting [12, 35].
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Figure 2. Down-squark mass splitting ∆d̃ as a function of mg̃ and md̃ [GeV]. White: negative

soft masses. Black: excluded by lower bound on light Higgs mass.

large top Yukawa coupling in the RGE drives the stop mass to low values, such that the

Higgs mass bound cannot be fulfilled. In our analysis we choose tan β = 5, such that the

top Yukawa coupling gets smaller, but the natural hierarchy between the top and bottom

Yukawa couplings, induced by v0/MPl in the CMM superpotential, is preserved. We fix

the inputs a1
d/md̃ = 1.8 and arg(µ) = 0, such that the allowed space for mg̃ and md̃

around 1 TeV is large. Finally, we take mũ = md̃ as in ref. [12]. In figure 2 we show the

mass splitting parameter ∆d̃ in the mg̃ − md̃ plane for this scenario. Black regions are

excluded by the Higgs mass bound. White regions are forbidden due to negative soft mass

parameters. Additional constraints arise from processes reflecting the large atmospheric

neutrino mixing angle like τ → µγ, b → sγ, and the mass difference ∆Ms; these can cut

further into the low mg̃ and md̃ regions.

Based on these considerations, we select three sets of CMM input parameters, given in

table 3. As said above, these parameters are defined at the electroweak scale, more precisely

at MZ , in ref. [12]. For consistency, we will thus set MS = MZ (and correspondingly η6 = 1,

neglecting the small effect of mt 6= MZ) in our analysis of meson-antimeson mixing. Sets

2 and 3 do satisfy the ∆Ms constraint for all values of θ and φBs , while Set 1 requires

|2φBs | to be between 1.2 and 2.4 radians for small θ to satisfy this constraint. Note that

especially Set 1 (with small mg̃ and large ∆d̃) is chosen such that CMM effects in b → s,

b→ d, and s→ d transitions are large.
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mg̃ [GeV] md̃ [GeV] ∆d̃ θmax [◦]

Set 1 400 2000 0.52 0.5

Set 2 700 2000 0.44 0.9

Set 3 700 3000 0.51 0.9

Table 3. CMM parameter sets for fixed a1
d/md̃ = 1.8, arg(µ) = 0, and tanβ = 5, satisfying the

constraints discussed in section 5.1. The last column shows the maximal mixing angle θmax allowed

by |ǫK | for sin 2φK = 1 (the symmetric solution θ ∈ [(π − θmax)/2, π/2] is excluded by B physics

observables, see figure 4).

5.2 Scenario I: sin 2φK ∼ O(1)

As long as the CMM phase φK is not too close to zero, |ǫK | gives the best constraint on

θ. The dependence of θmax on the relevant combinations of parameters, i.e., sin 2φK/m
2
g̃,

md̃/mg̃, and ∆d̃, is summarized in figure 3-left. The plain black and dashed gray lines

(which happen to be nearly superposed) correspond to md̃/mg̃ and ∆d̃ of Set 2 and Set

1, respectively, while the two other lines are obtained by interchanging md̃/mg̃. As one

can see, for | sin 2φK |/m2
g̃ & 1TeV−2 and typical values of the parameters md̃/mg̃ and ∆d̃,

θmax is of the order of one degree. Figure 3 has been obtained treating the errors in table 2

as flat, yet a different error treatment — and/or inflated errors in table 2 — would not

change this picture significantly. Fixing φK to π/4, the precise limits obtained for the

various parameter sets defined in section 5.1 are displayed in the last column of table 3.

The small contributions in section 4.3 have no impact on these numbers.

In the Bd and Bs systems, the SM contributions are not as suppressed as for ǫK .

Consequently, the smallness of θmax prevents any visible effect in ∆Md and SJ/ψKS
, while

the formulas for ∆Ms and φs are well approximated setting θ = 0. Interestingly, sizeable

CMM contributions in the Bs system may be welcome to reduce the 2.2σ discrepancy

between the SM prediction for φs and its experimental value [24]. Within Set 1 it is

possible to bring this discrepancy down to the one-sigma level while satisfying all existing

constraints, see figure 3-right.

Finally, we briefly comment on the dependence of θmax on the hypothesis of tribimaxi-

mal lepton mixing. In particular, one might expect the 23-mixing angle to be large but not

π/4. In this case, Im [(Rd)32(Rd)
∗
31]

2 = −1
4 sin4 θ23 sin2 (2θ) sin(2φK) for θ13 = 0. Hence,

for large θ23, the constraints on θ do not differ much. For a sizeable 13-mixing angle in Vℓ,

|ǫK | gets additional contributions:

∆
(
Im[(Rd)32(Rd)

∗
31]

2
)

=sin θ13 sin3 θ23 sin(2θ)[sin(2φK)cos(2θ)cos(φ3−φ2+α4−α1−δ)

− cos(2φK) sin(φ3 − φ2 + α4 − α1 − δ)] + O
(
sin2 θ13

)
.

(5.1)

No large numerical factors offset the sin θ13-suppression, so that the modified θ bounds are

again as stringent as those exemplified in figure 3.

Up to now, we have taken the viewpoint of a fixed sparticle spectrum, and investigated

the correlation between effects in b → s and b, s → d transitions governed by the mixing

angle θ. As θ turns out to be restricted to very small values, it is interesting to consider
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Figure 3. Left: Constraints on θ from |ǫK | as a function of sin 2φK/m
2
g̃ for ∆d̃ = 0.44 (black) /

0.52 (gray) and md̃/mg̃ = 2.86 (plain) / 5 (dashed). Right: CP-violating phase φs as a function of

the CMM phase φBs
. The light gray (dark gray) curve corresponds to Set 1 (Set 2) with θ = 0.

The SM prediction (horizontal line) is recovered for 2φBs
= 0,±π. The broad gray band indicates

the one-sigma measurement [24].

the opposite viewpoint of a fixed ‘natural’ θ value — say, sin θ = 0.5 — and derive the

corresponding constraints on sparticle masses from ǫK . Setting again φK to π/4, we find

that a soft mass scale mg̃ ≃ 2TeV is possible only if the ratio md̃/mg̃ ≃ 1. In such a

scenario, however, the mass splitting parameter ∆d̃ is very small (cf. figure 2), such that

CMM effects in other observables are negligible. For larger values of the ratio md̃/mg̃,

∆d̃ increases and accordingly the constraints on mg̃ are much more stringent (for example

mg̃ & 20TeV for md̃/mg̃ = 2). CMM effects in Bd and Bs physics are thus again killed,

this time by the strong 1/m2
g̃ suppression factor.

5.3 Scenario II: sin 2φK ∼ 0

If sin 2φK is close to zero, CMM effects cannot make their way into ImMK
12 anymore,

and the best constraints on θ are obtained from ∆MK and B physics observables. As

mentioned in section 4, ∆MK is plagued by hadronic uncertainties, so that we merely

impose |∆MCMM
K | < ∆M exp

K to stay on the conservative side. In this case, for mg̃ ≃
700GeV, the constraint from ∆MK only starts to compete with that from |ǫK | when

|φK | = O(0.1◦), corresponding to θmax ≃ 10◦ − 30◦ (depending on the precise values of ∆d̃

and md̃/mg̃). The constraints from ∆Md, SJ/ψKS
, and ∆Md/∆Ms are in general better,

as we illustrate in figure 4 for Set 1 and Set 2. Note that the constraint from ∆Md/∆Ms

depends on both φBs and φBd
= φK+φBs . The plots shown in figure 4 correspond to φK = 0

and φK = π/2. Other φK values lead to different plots, with however the same general

appearance, in particular the exclusion of small θ angles for some specific φBs values. For

these specific values, the tight bounds on θ derived in section 5.2 are thus even surpassed.

As mentioned previously, φs can cut further into the parameter space, especially for

negative φBs values, see figure 3-right. However, this does not change the typical value of

θmax obtained from B physics observables, which is of ten or a few tens of degrees.
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Figure 4. Constraints on θ fromB physics observables. Black (gray) points indicate allowed regions

in Set 2 (Set 1) parameter space. The first four plots show individual three-sigma constraints

from (a) ∆Md, (b) SJ/ψKS
, (c) ∆Md/∆Ms setting φK = 0, (d) ∆Md/∆Ms setting φK = π/2.

Plots (e) and (f) show the combined (a,b,c) and (a,b,d) constraints, respectively. In the case of

Set 1, the three-sigma constraint from ∆Ms has also been imposed, excluding points outside the

1.2 . |2φBs
| . 2.4 range (recall that Set 2 is not affected by this constraint). Imposing further

the constraint from φs would remove the gray points with 2φBs
< 0 and the black points with

−1.9 . 2φBs
. −1.5 for sin θ below 0.15, see figure 3-right. Finally, Set 2 (Set 1) points above the

black (gray) horizontal line are excluded by ∆MK .

5.4 Closing the unitarity triangle

Recently, several studies pointed out a possible tension in the SM between the value of sin 2β

predicted from |ǫK | and ∆Ms/∆Md, and its direct measurement from SJ/ψKS
[21, 37–39].
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In this section, we illustrate how CMM effects can remove this tension, and simultaneously

account for a sizeable CP-violating phase in the Bs system.

Due to the particular sensitivity of |ǫK | to new-physics effects, either θ or φK must

be very small. We will thus consider the two limits θ = 0 and φK = 0. For each case, we

will compare the value of sin 2β extracted from SJ/ψKS
with its determination from |Vus|,

|Vcb|, |ǫK |, and ∆Ms/∆Md, obtained inverting the following expressions with respect to

sin 2β and Rt:

|ǫK | =κǫ
MKF

2
KB̂K

12
√

2∆MK

×
{
G2
FM

2
W

π2
|Vcb|2|Vus|2

[
|Vcb|2R2

t sin(2β)η2S0(xt) (5.2)

+2Rt sin β(η3S0(xc, xt)−η1S0(xc))

]
−α2

s(MS)

8m2
g̃

sin(2φK) sin2(2θ)
η2η6

r
S(g̃)(r1, r3)

}
,

∆Ms

∆Md
=ξ2

MBs

MBd

(5.3)

×

√
(k1 +X cos 2φBs cos2 θ)2 + (−2k2Rt sin β|Vus|2 −X sin 2φBs cos2 θ)2

√(
R2
t cos 2β|Vus|2+X cos 2φBd

sin2 θ
)2

+
(
R2
t sin 2β|Vus|2−X sin 2φBd

sin2 θ
)2 .

Here k1 = 1 + |Vus|2(1 − 2Rt cos β), k2 = 1 + |Vus|2(1 −Rt cosβ),

X =
π2α2

s(MS) η6 S
(g̃)(r1, r3)

2|Vcb|2G2
FM

2
Wm

2
g̃ r S0(xt)

, (5.4)

and Rt = |VtdV ∗
tb|/|VcdV ∗

cb| is a side of the unitarity triangle (UT). The above expressions

hold to 0.5% accuracy. In the SM, this leads to sin(2β ǫK ) = 0.81+0.11
−0.09 with the inclusive

|Vcb| determination of table 2, and to sin(2β ǫK ) = 0.98+0.02
−0.11 if the exclusive determination

from B → D∗ℓν decays, |Vcb|excl = (38.8 ± 1.1) · 10−3 [24], is used instead. Note that

|Vcb|incl does not lead to any significant deviation with respect to Sexp
J/ψKS

, while a tension

is indeed observed with the smaller value |Vcb|excl. In order to illustrate how CMM effects

can compensate for a low |Vcb| input in UT analyses, we will adopt the averaged value of

ref. [39], |Vcb|LS = (41.0±0.63) ·10−3 . In the following, we use the CMM input parameters

of Set 1. All errors are treated as gaussian.

θ = 0: CMM effects in Rt. Since for θ = 0 there are no effects in K and Bd mixing,

CMM contributions enter the UT only via ∆Ms. From figure 5-left, one sees that Rt has

to increase in order to close the UT. This requires a CP-violating phase 2φBs ∈ [1.2, 1.8],

taking into account the three-sigma constraints on φBs from ∆Ms and φs. The dashed

red curve shows Rt for φBs = 0.7, such that the UT determined from |ǫK | and ∆Ms/∆Md

agrees with the sin 2β measurement from SJ/ψKS
.

φK = 0, θ = 0.1: CMM effects in Rt and β. In this second case, CMM effects affect

both ∆Ms/∆Md and SJ/ψKS
. For a fixed angle θ, the UT can be closed by adapting the

CMM phase φBs = φBd
. The resulting apex of the UT is shown by the intersection of the

dashed red lines in figure 5-right for θ = 0.1 and φBs = 0.7. For any value of θ allowed
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Figure 5. One-sigma constraints on the UT from SJ/ψKS
(light gray), |ǫK | (gray), and ∆Ms/∆Md

(dark gray) in the SM. The one-sigma region determined from |Vus|, |Vcb|, |ǫK |, and ∆Ms/∆Md

assuming the SM is shown in black, and its shift due to CMM effects is indicated in dashed red. Left:

Scenario I, θ = 0, φBs
= 0.7. Right: Scenario II, θ = 0.1, φBs

= φBd
= 0.7. CMM inputs: Set 1.

by the constraints from Bd and Bs observables in section 5.3, one can find a phase φBs to

close the UT.

Deviations from these two limit cases, i.e., small but nonzero θ or φK values, rapidly

generate CMM effects in |ǫK | as well (figure 3-left). These can lower the band from the

|ǫK | constraint in the (ρ, η) plane, directly making up for the low |Vcb| input value.

6 Conclusions

Grand-unified theories introduce relations among quark and lepton masses and mixings.

Motivated by the large atmospheric mixing angle in the neutrino sector, several studies

focussed on the consequences of the SU(5) Yukawa relation Yd = Y
⊤
e in b→ s transitions.

In this work, we considered corrections to this relation which are essential to account for

the observed light quark and lepton masses. In particular, we investigated the effects on

s → d and b → d transitions of the additional rotation of the dR and sR quarks. This

deviation with respect to the PMNS matrix, denoted by U , can be parameterized by an

additional mixing angle θ (see eqs. (3.4), (3.5)).

In our analysis, we focussed on models with small Higgs representations; a modified

version of the CMM model served as our specific scenario. In this setup, the differences

between the down-quark and charged-lepton masses are naturally explained by dimension-

five Yukawa operators. The associated supplementary rotation θ was constrained from

K −K and Bd − Bd mixing observables. In particular, we found that, in the absence of

fortuitous cancellations among the new phases in the matrix U , |ǫK | sets a stringent bound

on θ, θmax ∼ O(1◦). Consequently, in the basis where the charged-lepton Yukawa couplings

are diagonal, the matrix DeỸσ + Ỹ
†
σDe + 5 σ

v0
Ỹ
†
σỸσ (in the notations of eqs. (2.5), (3.3))

must be diagonal as well. Barring cancellations, this implies that the flavor structure

of the couplings which modify the Yukawa unification must be similar to that of the

initial terms. In other words, in the corrected relation Yd = Y
⊤
e + 5 σ

v0
Yσ (eq. (3.3)), the
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three matrices Yσ, Yd, and Y
⊤
e must be essentially aligned. Constraints from B physics

observables (∆Md, SJ/ψKS
, and ∆Ms/∆Md) were also analyzed, and shown to imply the

looser bound θmax ∼ O(10◦).

While we have worked out this analysis for a specific GUT model, our results hold in

general for models with small Higgs representations: large effects of the neutrino mixing

angles on bR → sR transitions lead to large effects in bR → dR and sR → dR transitions for

natural values of the parameters, once the mass relations for the light quarks and leptons

are corrected. An efficient mechanism is naturally needed to render the mixing among right-

handed d-quarks visible. In the CMM model, this mechanism is provided by the fast SO(10)

running of the d̃R soft mass matrix, which generates the large universality breaking ∆d̃ at

the electroweak scale. Of course, other GUT scenarios could include additional sources of

flavor and CP violation inducing effects in |ǫK |. These could soften the constraints on θ.

Yet they would have to be fairly fine-tuned to cancel the potentially large impact of the

corrections from the dR rotation matrix Rd (eq. (3.4)).

Interestingly, the correction operators which are of importance for proton decay but

contribute equally to the fermion masses ought to have a different flavor structure in

order to be in agreement with the experimental limit [17]. Both types of operators are

generically present in GUTs. Hence, our analysis is an important step in establishing a

consistent grand-unified model.

Finally, we also considered the possible tension between the value of sin 2β predicted

from |ǫK | and ∆Ms/∆Md in the SM and its direct measurement from SJ/ψKS
, raised by the

authors of refs. [21, 37–39]. We illustrated how CMM effects can remove this tension, and

simultaneously reduce the 2.2σ discrepancy observed recently in the Bs−Bs mixing phase.
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A Loop functions

S0(xc) = xc, (A.1)

S0(xt) =
4xt − 11x2

t + x3
t

4(1 − xt)2
− 3x3

t log(xt)

2(1 − xt)3
, (A.2)

S0(xc, xt) = xc

[
log

xt
xc

− 3xt
4(1 − xt)

− 3x2
t log xt

4(1 − xt)2

]
, (A.3)

F (x, y) = − 1

(x− 1)(y − 1)
− 1

x− y

[
x lnx

(x− 1)2
− y ln y

(y − 1)2

]
, (A.4)

G(x, y) =
1

(x− 1)(y − 1)
+

1

x− y

[
x2 lnx

(x− 1)2
− y2 ln y

(y − 1)2

]
, (A.5)

– 20 –



J
H
E
P
0
8
(
2
0
0
9
)
0
0
2

L0(x, y) =
11

18
G(x, y) − 2

9
F (x, y), (A.6)

S(g̃)(x, y) = L0(x, x) − 2L0(x, y) + L0(y, y). (A.7)
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[11] S. Jäger and U. Nierste, Bs-B̄s mixing in an SO(10) SUSY GUT model,

Eur. Phys. J. C 33 (2004) S256 [SPIRES].
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